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A B S T R A C T   

Membrane-based absorbers have received much attention recently due to their higher absorption rates than 
conventional absorbers. Several studies have been conducted to analyze membrane-based absorbers’ perfor-
mance using numerical and analytical modeling. Numerical models are accurate; however, they are computa-
tionally expensive. Analytical models are computationally efficient; however, they have limiting assumptions 
and may exhibit inaccuracy accordingly. This study proposes a novel multi-label, big data-handling machine 
learning model for membrane-based absorbers used in sorption heat transformers, offering the accuracy of a 
numerical model with the efficient computation of an analytical model. A comprehensive dataset comprising 
over one million data points is generated using 2D numerical modeling. The dataset consists of 15 features, input 
parameters, including operating conditions and geometrical parameters, and four labels, output variables, 
including absorption rate, outlet concentration, solution outlet temperature, and heat transfer fluid outlet 
temperature. The Support Vector Regression, Random Forest Regression, and Decision Tree Regression are used 
and combined to develop the present model. Particle swarm optimization is used to find the optimized hyper- 
parameters of each model. A map-reduce algorithm is developed to minimize the computational time, and the 
optimized data chunk number is presented for the highest accuracy and the lowest computational time. The 
results of the proposed model are validated with experimental data, capturing most data within a relative dif-
ference of 15%. The machine learning-based model can predict the four outputs with an accuracy of over 90%. 
Moreover, it is shown that using the map-reduce algorithm results in a 40-fold decrease in computation time 
without significantly compromising accuracy.   

1. Introduction 

Fossil fuels are the primary source of energy and are one of the main 
contributors to climate change [1,2]. Heating and cooling are respon-
sible for approximately 80% of the energy consumption in residential 
buildings [3]. Consequently, considerable attention has been paid to 
developing sustainable and efficient heating, cooling, and energy stor-
age systems [4]. Currently, most chillers and heat pumps are vapor 
compression refrigeration systems that run on electricity, mainly 
generated from burning fossil fuels [5]. Additionally, conventional 
vapor compression refrigeration systems use ozone-depleting fluoro-
carbon-type refrigerants [6–8]. 

Considerable waste heat from various industrial processes is 
routinely released into the ambient environment [9,10]. About 50% of 
all primary energy becomes waste heat, with 60% of this waste heat 
classified as low-grade with a temperature below 100 ◦C [11]. Recov-
ering, storing, and converting low-grade waste heat can reduce green-
house gas emissions significantly. Such systems are the topic of many 
exploratory studies [12]. Heat-driven absorption heat transformers, 
chillers/heat pumps, are one such system. Absorption heat transformers 
use low-grade heat and ozone-friendly working fluids [13–15]. How-
ever, existing absorption heat transformers are not economically viable 
since they suffer from a low Coefficient of Performance (COP). 

The absorber and its absorption rate dictate absorption heat trans-
formers’ cost and performance. High absorption rates often require an 
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oversized heat and mass exchanger [16]. Several configurations have 
been suggested to improve the performance and reduce the cost of the 
absorber; these include: i) laminar and turbulent falling films, ii) bubbly 
flows, and iii) the use of atomizers [17]. While only marginally 
enhancing the absorption rate, these designs lead to inefficient, heavy, 
and complex absorbers. These absorbers have three main issues: high 
film thickness, flow separation, and a low surface-wetting ratio. 
Recently, membrane-based absorbers have become popular for their 
ability to enhance the COP of absorption chillers/heat pumps [18–24]. A 
microporous/nanofibrous membrane separates the liquid and vapor 
phases in this absorber type. The liquid phase cannot go through the 
selective membrane, while the vapor phase can, leading to vapor 
absorption. 

Membrane-based absorbers have been modeled theoretically, 
analytically, and numerically. Ali [25] developed a theoretical model to 
design a compact membrane-based absorber with a hydrophobic 
microporous membrane. Ashouri and Bahrami [26] proposed two 
analytical solutions for membrane-based absorbers using the Laplace 
transform method [27] and similarity solution [28]. 

Yu et al. [29] performed a parametric study on a membrane-based 
absorber using the Lattice Boltzmann method. A comprehensive para-
metric study was performed to quantify the influence of different 
operational and geometrical parameters. They reported that the solution 
film thickness and velocity were the key parameters. Asfand et al. [30] 
performed a 3D CFD simulation to calculate the heat and mass transfer 
in a membrane-based absorber. They showed a three-fold enhancement 
in absorption rate could be acquired by decreasing the thickness of the 
solution channel from 2 mm to 0.5 mm. Venegas et al. [17] proposed a 
1D numerical model, developed based on a mass transfer resistance 
network, for a membrane-based absorber, and validated the model with 
experimental data available in the literature. 

Several other studies have been conducted to analyze membrane- 
based absorber performance using computational fluid dynamics and 
numerical methods [31–34]. These methods can produce detailed, ac-
curate results; however, implementing them incurs a high computa-
tional cost. Although they offer efficient computation, membrane-based 
absorber analytical models have many limiting assumptions, con-
straining their applicability and presenting inaccuracies. These models 
consider isothermal boundary conditions at the heat exchanger wall 

and, as such, cannot consider temperature lift and heat exchanger wall 
thickness [26]. 

Machine learning is an emerging tool that provides the accuracy of a 
numerical model and the time efficiency of an analytical model. There 
are only a few studies on membrane-based absorbers that use machine 
learning. Sui et al. [35] developed a three-dimensional CFD model to 
investigate a membrane-based absorber with inclined grooves on the 
heat exchanger wall. A machine learning method based on an artificial 
neural network and non-dominated sorting genetic algorithm-II was 
developed to optimize the grooves’ geometries and maximize the inte-
grated performance. In addition to geometric optimization, Sui et al. 
[36] used eight different types of machine learning algorithms: K- 
nearest neighbor, support vector machines, extra tree, decision tree, 
backpropagation neural networks, extreme gradient boosting, partial 
least squares, and random forest to find the best ionic liquid absorbent 
candidate. Sui and Wu [37] also developed an Artificial Intelligence 
model to minimize flow maldistribution in membrane-based absorbers. 

For the first time, this study proposes a novel multi-label, big data- 
handling machine learning model to predict the heat and mass trans-
fer in membrane-based absorbers used in absorption chillers and heat 
pumps. A comprehensive dataset, comprising one million data points, is 
generated using 2D numerical modeling using the Compute Canada 
supercomputers, namely, Narval, Cedar, Graham, and Beluga [34]. The 
dataset consists of 15 features, input parameters, including operating 
conditions and geometrical parameters, and four labels, output vari-
ables, including absorption rate, outlet concentration, solution outlet 
temperature, and heat transfer fluid outlet temperature. The Support 
Vector Regression, Random Forest Regression, and Decision Tree 
Regression are used and combined to develop the present model. The 
particle swarm optimization is used to find the optimized hyper- 
parameters of each model. A map-reduce algorithm is developed to 
minimize the computational time, and the optimized data chunk num-
ber is presented for the highest accuracy and the lowest computational 
time. The results of the machine learning-based model are validated 
with experimental data available in the literature. The developed ma-
chine learning-based model (source code) and the dataset are shared on 
the authors’ GitHub and are provided as supplementary material, 
enabling prospective readers to perform membrane-based absorber 
design, real-time control, and optimization in an accurate, time-efficient 

Nomenclature 

Ac Channel cross-section area, m2 

C Concentration of absorbate, kg kg− 1 

c Isobaric specific heat, J⋅kg− 1 K− 1 

D Mass diffusivity, m2⋅s− 1 

Dm Membrane mean pore diameter, μm 
g Gravity, m⋅s− 2 

habs Absorption heat, J kg− 1 

J Mass flux, kg m− 2 s− 1 

km Membrane mass transfer coefficient, kg m− 2 s− 1 Pa− 1 

p Pressure, Pa 
Lm Membrane length, m 
M Molecular mass, g mol− 1 

ṁ Mass flux, kg m− 2 s− 1 

q̇ Heat flux, W m− 2 

R Universal gas constant, J/mol− 1 K− 1 

T Temperature, K 
u Average velocity, m s− 1 

x, y Local tangential and normal position, m 

Greek symbols 
α Thermal diffusivity, m2 s− 1 

φ Membrane porosity 
τ Membrane tortuosity 
δ Film thickness, μm 
ρ Density, kg m− 3 

Subscripts 
HX Heat exchanger 
HTF Heat transfer fluid 
m Membrane 
in Inlet 
inf Interface 
s Solution 
v Vapor 
w Wall 

Abbreviations 
COP Coefficient of Performance 
CFD Computational fluid dynamics 
DTR Decision tree regression 
RFR Random forest regression 
SVR Support vector regression 
MSE Mean squared error 
RMSE Root mean squared error  
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manner. Also, the present big data-handling machine learning model, 
developed based on a customized MapReduce algorithm, can be used for 
other multi-label regression problems by only changing the name of 
features and labels in the present source code. 

2. Problem description and formulation of assumptions 

Coupled heat and mass transfer in membrane-based absorbers is 
numerically studied for single and double-sided configurations, as 
schematically shown in Fig. 1. Aqueous LiBr, which is the most common 
absorbent in absorption chillers and heat pumps, is used as the absor-
bent. The aqueous LiBr is mechanically constrained via a hydrophobic 
nanofibrous, microporous membrane and a heat exchanger wall to 
adjust the film thickness. The membrane is hydrophobic, thus it is 
impermeable to the aqueous LiBr solution, while water vapor can pass 
through it. Since the water vapor partial pressure at the solution- 
membrane interface is less than the vapor pressure, the water vapor 
traverses the membrane and is absorbed at the solution-membrane 
interface, diffusing into the bulk of the aqueous LiBr. Absorption is an 
exothermic process, therefore; the temperature of the aqueous LiBr in-
creases due to the heat of absorption, leading to a decrease in the ab-
sorption rate due to variation in the solution equilibrium concentration, 
if the solution temperature is not maintained through cooling. There-
fore, the temperature of the aqueous LiBr is maintained using a heat 
exchanger. 

The following assumptions have been made to develop the proposed 
analytical model [38]:  

• The system works under a steady-state condition; 
• The flow is laminar (the Reynolds number, Re < 6) and hydrody-

namically fully developed (development length, Ldevelopment =

0.0575*Re*D < 0.4mm [39], where D is hydraulic diameter);  

• The absorbent is non-volatile;  
• The heat transfer from the absorbent to the membrane is neglected. 

The membrane is thin (~100 µm), and highly porous (~90%); 
therefore, its sensible heat storage is negligible considering its low 
mass [30,40];  

• The heat transfer from the absorbent to the water vapor is negligible 
since the system works under a vacuum condition;  

• Membrane is hydrophobic in this application; thus the solution does 
not penetrate the membrane [30,40]; 

• Concentration and temperature distributions are uniform and con-
stant at the inlet; and  

• The membrane’s mean temperature is constant (see Ref. [38] for 
more details). 

3. Model development 

3.1. Governing equations 

The solution velocity for the flow between two the membrane and 
heat exchanger wall is as follows: 

us = 6us

(
ys

δs
− (

ys

δs
)

2
)

(1)  

where us, us, and δs are the solution velocity, the solution mean velocity, 
and the solution thickness, respectively. The heat transfer fluid velocity 
for the flow within the heat transfer fluid channel is as follows: 

uHTF = 6 uHTF

(
yHTF

δHTF
−

(
yHTF

δHTF

)2
)

one − sided (2)  

Fig. 1. Schematic diagram of membrane-based absorber over a heat exchanger. (a) single-sided configuration, and (b) double-sided configuration.  
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uHTF = 1.5 uHTF

(

1 −

(
yHTF

δHTF

)2
)

double − sided (3)  

where uHTF, uHTF, and δHTF are the heat transfer fluid velocity, the heat 
transfer fluid mean velocity, and the heat transfer fluid thickness, 
respectively. Given the advective transport in the flow direction “xs” and 
the diffusivity transport in the normal direction “ys” for the solution 
domain, the following governing equations for energy and species 
conservation can be derived, respectively: 

us
∂Ts

∂x
= αs

∂2Ts

∂y2
s

(4)  

us
∂c
∂x

= Ds
∂2c
∂y2

s
(5)  

where T, αs, and Ds are the solution’s temperature, thermal diffusivity, 
and mass diffusivity, respectively. It should be mentioned that ˝c˝ is the 
water (absorbate) concentration (kg water/kg solution), not the solution 
concentration (kg LiBr/kg solution). Energy equations for the heat 
transfer fluid and heat exchanger wall can be written as follows: 

uHTF
∂THTF

∂x
= αHTF

∂2THTF

∂y2
HTF

(6)  

∂2THX

∂y2
HX

+
∂2THX

∂x2 = 0 (7)  

where THTF, αHTF, and THX are the heat transfer fluid’s temperature, 
thermal diffusivity, and heat exchanger’s temperature, respectively. The 
Dusty-Gas model [41] is used to model the mass transfer through the 
membrane. This mass transfer includes molar diffusion and viscous 
fluxes, which can be calculated as follows [29]: 

J = km
(
pv − pinf

)
[

kg
m2.s

] (8)  

where km, pv, and pinf are the membrane mass transfer coefficient, vapor 
pressure, and water vapor partial pressure at the membrane-solution 
interface, respectively. The membrane mass transfer coefficient can be 
found as follows [29]: 

km = −
φDm

δmτ (

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8M

9πRTm

√

+
pvDm

32μgRTm
) [

kg
Pa.m2.s

] (9a)  

Tm =
Ts− in + THTF + Tv

3
[K] (9b)  

τ =
(2 − φ)2

φ
(9c)  

where φ, Dm, τ, δm, and R are the membrane porosity, mean pore 
diameter, tortuosity, thickness, and the universal gas constant, respec-
tively. In addition, M, μg, and Tm are the water vapor molar weight and 
dynamic viscosity, and average membrane temperature, respectively. 
The average membrane temperature is assumed to be an average of the 
inlet solution temperature ˝Ts− in˝, inlet heat transfer fluid temperature 
˝THTF˝, and water vapor temperature ˝Tv˝ [38]. 

3.2. Boundary conditions and modeling procedures 

The boundary conditions for the solution, heat exchanger, and heat 
transfer fluid are as follows [27]: 

Ts(x = 0, ys) = Ts− in & c (x = 0, ys) = cin (10)  

ρsDs
∂c
∂ys

⃒
⃒
⃒
⃒

inf
= km

(
pv − pinf

)
(11)  

− ks
∂Ts

∂ys

⃒
⃒
⃒
⃒

inf
= habskm

(
pv − pinf

)
(12)  

− ks
∂Ts

∂ys

⃒
⃒
⃒
⃒

ys=0
= − kHX

∂THX

∂yHX

⃒
⃒
⃒
⃒

yHX=δHX

(13)  

∂THX

∂x

⃒
⃒
⃒
⃒

x=0
=

∂THX

∂x

⃒
⃒
⃒
⃒

x=L
= 0 (14)  

− kHX
∂THX

∂yHX

⃒
⃒
⃒
⃒

yHX=0
= − kHTF

∂THTF

∂yHTF

⃒
⃒
⃒
⃒

yHTF=δHTF

(15)  

THTF(x = L, yHTF) = THTF counter flow (16)  

THTF(x = 0, yHTF) = THTF parallel flow (17)  

∂THTF

∂yHTF

⃒
⃒
⃒
⃒

yHTF=0
= 0 (18) 

The water vapor partial pressure at the membrane-solution interface 
˝pinf˝ for the LiBr-water solution can be calculated based on the 
following experimental correlation [13]: 

pinf (Ts− inf , cinf ) = exp(A +
B

Tinf
+

C
T2

inf
) (19a)  

A = a1 + a2cs,inf + a3c2
s,inf (19b)  

B = a4 + a5cs,inf + a6c2
s,inf (19c)  

C = a7 + a8cs,inf + a9c2
s,inf (19d)  

where the corresponding constants can be found in Ref. [13]. The heat 
and mass transfer rates can be found as follows: 

q̇(x) = − ks
∂Ts

∂ys

⃒
⃒
⃒
⃒

inf
[
w
m2] (20)  

ṁ(x) = ρsDs
∂c
∂ys

⃒
⃒
⃒
⃒

inf
[

kg
m2s

] (21) 

The governing equations (Eqs (4–7)) should be solved simulta-
neously. In this study, the finite difference method was used. The first 
and second derivatives of parameters were discretized using the central 
difference method. Virtual nodes were considered to couple the 
boundary conditions to the domain to maintain the second-order accu-
racy for the solution. All the equations were solved iteratively until a 
residual of 10− 8 was reached for each parameter. Thermophysical 
properties for the solution and the heat transfer fluid were calculated at 
each iteration. These properties can be found in Ref [42]. The numerical 
model was coded in MATLAB software. Computations were performed 
on Compute Canada supercomputers, namely, Narval, Cedar, Graham, 
and Beluga [43]. 

3.3. Mesh independency study 

Several different values for Δx,Δys,ΔyHX, and ΔyHTF were studied to 
ensure mesh independency. Since the mesh is conformal, Δx was the 
same for the solution heat exchanger and heat transfer fluid domains. 
Table 1 shows the parameters of the investigated case for the mesh in-
dependence study. Outlet solution concentration and heat transfer fluid 
temperature were considered as the criteria. Fig. 2 shows the variation 
in the outlet solution concentration and heat transfer fluid temperature 
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versus different mesh numbers. As seen in Fig. 2, a 120,000 mesh 
number was sufficient for mesh independency. Δx = 500μm, Δys =

0.5μm,ΔyHX = 100μm, and ΔyHTF = 10μm were used for all other cases 
since variations in the outlet solution concentration and outlet heat 
transfer fluid temperature were negligible with increasing mesh 
number. 

4. Data analytic pipeline 

In this section, different components of the data analytic pipeline 
including data description, data processing, and machine learning 
models are explained. 

4.1. Data description 

For this study, we generated a big dataset, which comprises one 
million data, using a 2D numerical model of a membrane-based 
absorber. The dataset includes 15 features, input parameters, 
including operating conditions and geometrical parameters. The range 
of these features is presented in Table 2, and Fig. 3 shows their value 
distribution. To make sure the features’ ranges are realistic, we used all 
practical ranges by considering the operating conditions and geomet-
rical parameters of actual setups available in the literature [44–47] and 
the physics of phenomena occurring in membrane-based absorbers. 

All features were generated using uniform distribution to prevent 
bias in the dataset. However, the distribution of some features, as shown 
in Fig. 3, was not uniform. The reason is that some conditions could not 
fulfill the numerical modeling. For instance, absorption does not occur 
when the solution inlet concentration is 0.5 and the vapor pressure is 
870 Pa since the water vapor partial pressure at the membrane-solution 
interface is greater than the vapor pressure. Therefore, many data points 
were intuitively eliminated based on the physics of the phenomena. 

Table 1 
Considered parameters for the mesh independency study.  

Parameter Value Parameter Value 

Absorber length L[m] 0.05 Heat exchanger wall thickness 
δHX[mm]

3 

Solution thickness 
δs[μm]

500 Heat transfer fluid thickness 
δHTF [mm]

2 

Average solution 

velocity us

[mm
s

]
10 Heat exchanger thermal 

conductivity kHX

[
W

m.K

]
16 

Solution inlet 
temperature Ts− in[◦C] 

40 Average heat transfer fluid 

velocity uHTF

[mm
s

]
2 

Water inlet 
concentration 

cin

[
kg water

kg solution

]

* 

0.4 Configuration Single- 
sided 

Heat transfer fluid inlet 
temperature THTF[

◦C]
30 Mesh number 1: Δx = 5mm,

Δys = 5μm,ΔyHX = 1mm, and 
ΔyHTF = 100μm 

1000 

Vapor pressure pv[kPa] 1740 Mesh number 1: Δx = 3.75mm,

Δys = 3.75μm,ΔyHX = 750μm, 
and ΔyHTF = 75μm 

2000 

Membrane porosity φ 0.8 Mesh number 1: Δx = 2.5mm,

Δys = 2.5μm,ΔyHX = 500μm, and 
ΔyHTF = 50μm 

4500 

Membrane pore 
diameter Dm[μm]

0.5 Mesh number 1: Δx = 1.25mm,

Δys = 1.25μm,ΔyHX = 250μm, 
and ΔyHTF = 25μm 

2000 

Membrane thickness 
δm[μm]

50 Mesh number 1: Δx = 0.5mm,

Δys = 0.5μm,ΔyHX = 100μm, and 
ΔyHTF = 10μm 

120,000 

* Water concentration co = 1 − X where X is solution concentration.  

Fig. 2. Variation in the outlet solution concentration and outlet heat transfer 
fluid temperature versus different mesh numbers. 

Table 2 
List of features (inputs) and their range used in generating the dataset.  

Feature name Feature 
type 

Feature range Available 
experimental 
range in the 
literature [44–47] 

Absorber length 
L[cm]

Numeric 1 − 10 3 − 5 

Solution thickness 
δs[μm]

Numeric 50 − 500 100 − 200 

Average solution 

velocity us

[mm
s

]
Numeric 0.1 − 20 5 − 15 

Solution inlet 
temperature 
Ts− in[◦C] 

Numeric 25 − 55 25 − 35 

Water inlet 
concentration 

cin

[
kg water

kg solution

]

* 

Numeric 0.38 − 0.55 0.4 − 0.45 

Heat transfer fluid 
inlet temperature 
THTF [

◦C]

Numeric 25 − 55 25 − 30 

Vapor pressure 
pv[kPa]

Numeric 0.840 − 2.34 0.840 − 1.9 

Membrane porosity 
φ 

Numeric 0.1 − 1 0.4 − 0.9 

Membrane pore 
diameter Dm[μm]

Numeric 0.2 − 3 0.45 − 1 

Membrane 
thickness δm[μm]

Numeric 10 − 250 50 − 150 

Heat exchanger wall 
thickness δHX[mm]

Numeric 0.5 − 5 N/A 

Heat transfer fluid 
thickness 
δHTF [mm]

Numeric 0.25 − 5 0.25 − 5 

Heat exchanger 
thermal 
conductivity 

kHX

[
W

m.K

]

Numeric 13–17 Stainless steel Both 
170–230 Aluminum 

Average heat 
transfer fluid 
velocity 

uHTF

[mm
s

]

Numeric 0.1 − 20Parallel flow N/A 
− 0.1to − 20Counter flow 

Configuration Binary 0 single-sided 
configuration 

Single-sided 
configuration 

1 double-sided 
configuration 

* Water concentration co = 1 − X where X is solution concentration.  
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The four labels, the output variables of the system, are absorption 
rate, solution outlet concentration, solution outlet temperature, and 
heat transfer fluid outlet temperature. While three of these output var-
iables are independent, the absorption rate can be calculated using 
outlet solution concentration: 

ṁave =
ρs(To, co) us δs

L
(cout − cin) [

kg
m2s

] (22)  

4.2. Machine learning-based model development 

Considering the four continuous output variables of the systems, the 
problem in hand is a multi-variate regression. Several different linear or 
nonlinear regression models in machine learning (ML) literature were 
used to learn the core characteristics of the underlying physical system 
using the synthetic dataset [48–55]. However, without any information 
on whether the data is structured or semi-structured, a nonlinear model 

such as the Support Vector Regression (SVR) should work better than a 
linear regression model such as the logistic regression [56]. SVR handles 
unstructured or semi-structured data well while identifying the 
nonlinear relationships between variables and providing flexibility to 
adjust the model’s robustness by tuning hyper-parameters [57]. It is also 
well known that in contrast to a single model, ensemble methods that 
use the fusion of multiple models can provide higher performance while 
improving robustness by reducing the spread or dispersion of the pre-
dictions. Among different ensemble techniques, Random Forest 
Regression (RFR) and Decision Tree Regression (DTR) have shown 
decent performance in different applications [58,59]. 

During the development of the present model, we observed an 
inconsistency in the range of output variables. In fact, the range is very 
large for some variables while it is too small for some other variables. 
This inconsistency in the range reduces the accuracy of both the SVR and 
RFR. To compensate for this inconsistency, a common practice is an 

Fig. 3. Distribution of features (inputs) (a) to (o) and independent labels (outputs) (p) to (r) over their corresponding ranges.  
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auto-scale adjustment through which output variables will be mapped to 
a new space in which there is a reasonable range for each variable. After 
prediction, the inverse of the mapping is applied to the variables to be 
converted back to the real space. Table 3 provides the details of this 
mapping and inverse scaling. 

The whole point of generating a very large dataset was to make sure 
all possible realistic ranges for input variables are covered, however, 
with an increase in the number of input data points, we observed a 
significant increase in the computational complexity of the regression 
models, especially SVR and RFR. We also observed that these models 
perform differently for a different portion of the features’ range, leading 
us to believe that not a single regressor will perform the best and hence a 
fusion of regressors should be used. Moreover, to address the challenges 
of the computation cost, similar to any big data analytics problem, the 
Map-Reduce paradigm [60] should remedy the situation as it enables the 
processing of such a large dataset in a parallel manner. To ensure the 
stability and robustness of the final model while achieving a decent 

accuracy with the MapReduce approach, we used both bagging en-
sembles and stacking ensembles and hence a fusion of SVR, RFR, and 
DTR regressors. To be more specific, the split of datasets into several 
chunks provides the benefit of bagging while fusing the trained regres-
sion models on those chunks to finalize the prediction for the whole 
dataset resembles the stacking ensembles. 

Fig. 4 provides an infographic representation of the training and 
testing phase of the ML framework within the MapReduce paradigm. 
First, 90% of the entire dataset is randomly selected as the training 
dataset for the map phase, and 10% of the entire data set is used as the 
testing dataset for the reduce phase, as shown in Fig. 4 (a). The training 
dataset is then divided into ˝m˝ data chunks. Each data chunk is again 
divided into a 90% training set and a 10% validation set. The training set 
is then used to train SVR, RFR, and DTR, and the validation set is used to 
evaluate the models and assign a normalized weight to each model. A 
similar procedure is repeated for all ˝m˝ data chunks. Fig. 4 (b) shows 
the reduce phase when the entire training dataset is fed to all of the 

Fig. 3. (continued). 
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Table 3 
Procedure of mapping data before training and the inverse of mapped predicted labels.  

Label Mapping of the input labels Inversing of predicted labels 

Outlet concentration cout− mapped = 30(cout− real − cin)
0.2 

cout− predicted− real =
( cout− pridicted

30

)5
+ cin 

Solution outlet temperature Ts− out− mapped = 100(Tout− real − Ts− in) Tout− predicted− real =
Tout− pridicted

100
+ Ts− in 

Heat transfer fluid outlet temperature THTF− out− mapped = 10000(THTF− out− real − THTF− in) THTF− out− predicted− real =
THTF− out− pridicted

10000
+ THTF− in   

Fig. 4. Infographic representation of the map-reduce approach in handling our very large dataset during (a) training (map phase) and (b) testing (reduce phase).  
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trained SVRs, RFRs, and DTRs. The output of each model is multiplied by 
the corresponding normalized weight. The summation of all the outputs 
contributions is divided by ˝m˝ to predict the final value for each of the 
four output variables. To find the optimized hyperparameters of each 
model, we used the stochastic optimization method of Particle Swarm 
[61] as the given vector space is multi-dimensional. 

To provide a greater access of the experimentation to the public, the 
model and the dataset will be available on the author’s GitHub (and as 
supplementary data to this paper), enabling prospective readers to 
perform real-time absorber control, optimization, and design in an ac-
curate, time-efficient manner. 

5. Results and discussion 

5.1. Effect of data number, chunk number, and combination of SVR, RFR, 
and DTR on accuracy 

The present dataset is completely balanced; the distribution of all 
features is the same for each desired pressure range. Therefore, a pres-
sure range of 1200 to 1270 Pa, which includes 50,000 instances, is used 
to investigate the effect of instances, chunk number, and combining 
SVR, RFR, and DTR on the model accuracy. Root Mean Square Error 
(RMSE) is used as the criteria to measure accuracy. For SVR, C = 10, 
epsilon = 0.1, and RBF kernel are used. For RFR, a maximum number of 
estimators of 200 and a depth of 50 are used. A depth of 1000 is used for 
DTR. Fig. 5 shows the effect of data number (number of instances) on 
RMSE for four labels: absorption rate, outlet concentration, solution 
outlet temperature, and heat transfer fluid outlet temperature. The 
following can be observed:  

i) RMSE decreases by increasing the number of data.  
ii) By comparing the RMSE of 25,000 and 50,000 cases, it is deduced 

that 50,000 data can be enough to predict all the labels. Since the 
dataset is balanced, this conclusion can be applied to any desired 
pressure range (some other ranges were tested but not reported 
here).  

iii) Absorption rate is the most challenging label to predict since its 
range is very low (~10− 5 – 0.025, see Figs. 9 and 10). 

Fig. 6 shows the effect of chunk number on the computation time and 
RMSE for the present labels (output variables) including absorption rate, 
outlet concentration, solution outlet temperature, and heat transfer fluid 
outlet temperature. It should be noted that the RMSE and run-time are 
the average of 5 runs for each case. The following can be observed:  

i) Increasing the chunk number can slightly decrease accuracy since 
the submodels are trained with a lower number of data. 

ii) However, increasing the chunk number decreases the computa-
tional time by up to 40 times since the training time for a non- 
linear regression model, such as support vector regression, 

Fig. 5. Effect of data number on RMSE for the present labels: absorption rate, 
outlet concentration, solution outlet temperature, and heat transfer fluid outlet 
temperature. 

Fig. 6. Effect of chunk number on RMSE and computational time for the pre-
sent labels: absorption rate, outlet concentration, solution outlet temperature, 
and heat transfer fluid outlet temperature. 

Fig. 7. Effect of combination of SVR, RFR, and DTR on RMSE for the present 
labels: absorption rate, outlet concentration, solution outlet temperature, and 
heat transfer fluid outlet temperature. 

Fig. 8. Effect of using the inverse of MSE and RMSE to calculate the normalized 
weight for each used regressor to predict the present labels: absorption rate, 
outlet concentration, solution outlet temperature, and heat transfer fluid outlet 
temperature. 
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increases with increasing the number of data due to matrix 
calculation and memory usage.  

iii) The number of data for analysis of chunk number is about 50,000. 
For a higher number of data, i.e., this dataset (compromising one 
million data), training the model would be computationally 
expensive if a low chunk number is considered. 

It is worth noting that the computational time is just for training the 
model. Since the model is trained, the model can be used for designing 
membrane-based absorbers in less than a few seconds. 

Fig. 7 shows the effect of the SVR, RFR, and DTR combination on 
RMSE for the present labels (output variables) including absorption rate, 
outlet concentration, solution outlet temperature, and heat transfer fluid 
outlet temperature. The following can be observed:  

i) Combining the models increases accuracy.  
ii) SVR-DTR-RFR is the most accurate, and DTR is the least accurate. 

The reason that aggregating several weak regressors predict the final 
output more accurately can be attributed to the fact that the models 
can cover one another weaknesses. 

Fig. 8 shows the effect of using the inverse of MSE and RMSE to 
calculate the normalized weight for each used regressor to predict the 
present labels including absorption rate, outlet concentration, solution 

outlet temperature, and heat transfer fluid outlet temperature. Using the 
inverse of MSE results in a lower RMSE for each label, so MSE was used 
for calculating the normalized weight in developing the present map- 
reduce algorithm. 

5.2. Prediction of output variables (labels) 

At first, the entire dataset is used to train and test the model. 90% of 
the data is used for training and validation, and 10% for testing. A chunk 
number of 50 is used to train the model. For SVR, C = 10, epsilon = 0.1, 
and RBF kernel are used. For RFR, a maximum number of estimators of 
200 and a depth of 20 are used. A depth of 1000 is used for DTR. Fig. 9 
shows the predicted label (the results of the machine learning-based 
model) versus the actual label (the results of the numerical modeling) 
for the four labels including absorption rate, outlet concentration, so-
lution outlet temperature, and heat transfer fluid outlet temperature. 
The labels can be broadly predicted with an accuracy of 85% or higher, 
and, more specifically, the following can be observed:  

i) The absorption rate can be predicted with an accuracy of 85%; 
this is the most challenging label to predict since its range is very 
low (~10− 5 – 0.025, see Figs. 9 and 10).  

ii) Outlet concentration can be predicted with an accuracy of 96%. 

Fig. 9. Predicted label versus actual label based on numerical modeling for the present labels: absorption rate, outlet concentration, solution outlet temperature, and 
heat transfer fluid outlet temperature. One million data. 
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iii) Solution outlet temperature and heat transfer fluid outlet tem-
perature can be predicted with an accuracy of 99.5%. 

It was shown that the current model could handle one million data 
points. However, as far as real applications are concerned, the vapor 
pressure, or evaporator, is known to design a membrane-based absorber. 
Therefore, to increase the model’s accuracy, it is recommended to nar-
row down the vapor pressure range. For example, for a chiller with an 
evaporator temperature of 10 ̊C, pv = 1.227 kPa, a narrow vapor pres-
sure range of 1.15 to 1.3 kPa can be fed to the model. Fig. 10 shows the 
predicted label (the results of the machine learning-based model) versus 
the actual label (the results of the numerical modeling) for the four 

labels for the vapor pressure range of 1.15 to 1.3 kPa (150,000 data 
points). As can be seen, by narrowing down the pressure range, the 
accuracy of the model increases compared to the case that the model is 
trained with the entire dataset (one million instances). 

In conclusion, it was observed that the machine learning-based 
model can perform with high accuracy. Also, a short period of time is 
needed to train the model, and the trained model can be used to perform 
real-time absorber control, optimization, and design in some minutes 
while the computational time of the numerical modeling can be a barrier 
for these applications especially optimization and real-time control. 

5.3. Hyperparameters optimization 

The particle swarm optimization was used to find the optimal chunk 
number and hyper-parameters to ensure a high accuracy and a low 
computational time. Table 4 presents the optimized chunk number and 
hyperparameters for the present model to ensure a high accuracy and a 
low computational time. 

5.4. Validation with experimental data 

The model is validated with experimental data from Isfahani et al. 
[44,45]. As seen in Fig. 11, the machine learning-based model can 

Fig. 10. Predicted label versus actual label based on numerical modeling for the present labels: absorption rate, outlet concentration, solution outlet temperature, 
and heat transfer fluid outlet temperature. Vapor pressure range of 1.15 to 1.3 kPa (150,000 data points). 

Table 4 
Optimized chunk number and hyperparameters for the present model.  

Parameter Entire dataset (one 
million data) 

An arbitrary range of 150 kPa for 
the vapor pressure 

C for SVR 9 32 
Epsilon for SVR 0.13 0.07 
Number of estimators 

for RFR 
188 292 

Depth for RFR 33 49 
Depth for DTR 963 1590 
Chunk number 57 6  
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predict the experimental data, capturing data within a relative differ-
ence of 15%. 

5.5. Suggestion for continuing the present work 

Several other regressors and different types of ensembles can be 
applied to the present dataset. The dataset is available on our GitHub 
and as supplementary data to this study. Therefore, prospective readers 
can apply other methods to perform a more accurate prediction 
compared to the present study. 

6. Conclusion 

In this study, a novel multi-label, big data-handling machine learning 
model was proposed for membrane-based absorbers used in absorption 
heat pumps and chillers. Over one million data points were generated 
using a 2D finite difference numerical modeling. The dataset consisted of 
15 features, input parameters including operating conditions and 
geometrical parameters, and four labels, output variables including 
absorption rate, outlet concentration, solution outlet temperature, and 
heat transfer fluid outlet temperature. Support Vector, Random Forest, 
and Decision Tree Regressions were combined to develop the present 
model. A map-reduce algorithm was developed to minimize the 
computational time. Particle swarm optimization was used to find the 
optimized hyper-parameters of each model and chunk number. The re-
sults of the machine learning-based model were validated with experi-
mental data available in the literature, capturing data within a relative 
difference of 15%. 

The findings of the current research are as follows:  

i) RMSE decreases by increasing the number of instances.  
ii) Absorption rate is the most challenging label to predict since its 

range is very low (~10− 5 – 0.025).  
iii) Increasing the chunk number can slightly decrease the accuracy 

of the model. However, increasing the chunk number decreases 
the computation time by up to 40 times.  

iv) SVR-DTR-RFR is the most accurate model, and DTR is the least 
accurate.  

v) The machine learning-based model can predict the four outputs 
with an accuracy of over 90%.  

vi) The model’s accuracy is heightened by training using the desired 
vapor pressure range. 
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